k-Nearest Neighbors (k-NN)
![]()
k-Nearest Neighbors (k-NN) Algorithm in Machine Learning 1. Introduction to k-Nearest Neighbors (k-NN) k-Nearest Neighbors (k-NN) is a supervised learning algorithm used for classification and regression tasks. It is a….
![]()
k-Nearest Neighbors (k-NN) Algorithm in Machine Learning 1. Introduction to k-Nearest Neighbors (k-NN) k-Nearest Neighbors (k-NN) is a supervised learning algorithm used for classification and regression tasks. It is a….
![]()
Support Vector Machines (SVM) in Machine Learning 1. Introduction to Support Vector Machines (SVM) Support Vector Machine (SVM) is a supervised learning algorithm used for classification and regression problems. SVM….
![]()
Random Forests in Machine Learning 1. Introduction to Random Forests Random Forest is a Supervised Machine Learning algorithm that is used for both Classification and Regression tasks. It is an….
![]()
Decision Trees in Machine Learning 1. Introduction to Decision Trees A Decision Tree is a Supervised Learning algorithm used for both classification and regression problems. It mimics human decision-making by….
![]()
Logistic Regression in Machine Learning 1. Introduction to Logistic Regression Logistic Regression is a Supervised Learning algorithm used for classification problems. Unlike Linear Regression, which predicts continuous values, Logistic Regression….
![]()
Polynomial Regression in Machine Learning 1. Introduction to Polynomial Regression Polynomial Regression is an extension of Linear Regression that models the relationship between the independent variable (X) and the dependent….
![]()
Linear Regression in Machine Learning 1. Introduction to Linear Regression Linear Regression is one of the most fundamental and widely used supervised learning algorithms in machine learning. It is primarily….
![]()
Model Evaluation Metrics in Machine Learning Evaluating a machine learning model is crucial for ensuring its effectiveness. Model evaluation metrics provide a way to measure performance, compare models, and fine-tune….
![]()
Underfitting vs Overfitting in Machine Learning Introduction One of the biggest challenges in machine learning is building a model that can generalize well to unseen data. The two common problems….
![]()
Bias-Variance Tradeoff in Machine Learning Introduction The bias-variance tradeoff is a fundamental concept in machine learning that describes the tradeoff between two sources of error that affect model performance: Understanding….